MTH 516/616: Topology II Problem Set

- 1. Show that every covering space of an orientable manifold is an orientable manifold.
- 2. Given a covering action of a group G on an orientable manifold M by orientationpreserving homeomorphisms, show that M/G is orientable.
- 3. We define the connected sum $M_1 \# M_2$ of two *n*-manifolds M_1 and M_2 to be the quotient space obtained by deleting the interior of closed *n*-balls $B_i \in M_i$ for i = 1, 2, and then identifying the $\partial B_i (\approx S^{n-1})$.
 - (a) Show that if M_1 and M_2 are closed, then for $1 \le i \le n$,

$$H_i(M_1 \# M_2) \cong H_i(M_1) \oplus H_i(M_2).$$

(b) Show that if M_1 and M_2 are closed, then

$$\chi(M_1 \# M_2) = \chi(M_1) + \chi(M_2) - \chi(S^n).$$

- 4. For a map $f: M \to N$ between two connected closed orientable *n*-manifolds, the *degree of* f is an integer d such that f([M]) = d([N]).
 - (a) Show that for any connected closed *n*-manifold M, there is a map $f: M \to S^n$ of degree 1.
 - (b) Show that a *p*-sheeted covering projection $p: M \to N$ has degree $\pm p$.
 - (c) Show that for a degree 1 map $f: M \to N$, the induced homomorphisms at the level of fundamental group and homology are both surjective.
- 5. Show that direct limits of exact sequences in exact. More generally, if $\{C_{\alpha}, f_{\alpha\beta}\}$ is a directed system of chain complexes, then show that

$$H_n(\varinjlim C_\alpha) = \varinjlim H_n(C_\alpha).$$

6. Show that for all $\alpha \in C_k(X; R)$, $\varphi \in C^{\ell}(X; R)$, and $\psi \in C^m(X; R)$

$$(\alpha \frown \varphi) \frown \psi = \alpha \frown (\psi \smile \chi).$$

Consequently, deduce that the cap product makes $H_*(X; R)$ a right $H^*(X; R)$ -module.

- 7. Show that $H^0_c(X;G) = 0$, if X is path-connected and noncompact.
- 8. If M is a connected compact orientable *n*-manifold, a homeomorphism $f: M \to M$ is orientation preserving if f_* takes the fundamental class to itself, and orientation reversing otherwise. Use the cup product to show that every homeomorphism $f: \mathbb{C}P^2 \to \mathbb{C}P^2$ orientation preserving.
- 9. Show that if a connected closed orientable manifold M of dimension 2k has $H_{k-1}(M;\mathbb{Z})$ torsion-free, then $H_k(M;\mathbb{Z})$ is also torsion-free.

- 10. If $p: (\widetilde{X}, \widetilde{A}, \widetilde{x}_0) \to (X, A, x_0)$ is a covering space with $\widetilde{A} = p^{-1}(A)$, then show that $p_*: \pi_n(\widetilde{X}, \widetilde{A}, \widetilde{x}_0) \to \pi_n(X, A, x_0)$ is an isomorphism for n > 1.
- 11. Show that if $\varphi : X \to Y$ is a homotopy equivalence, then the induced homomorphisms $\varphi_* : \pi_n(X, x_0) \to \pi_n(Y, y_0)$ are isomorphisms for n > 1.